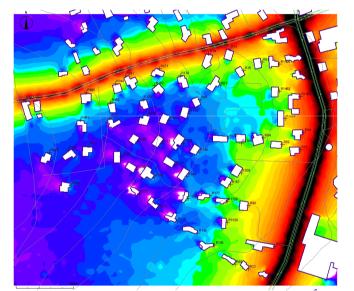
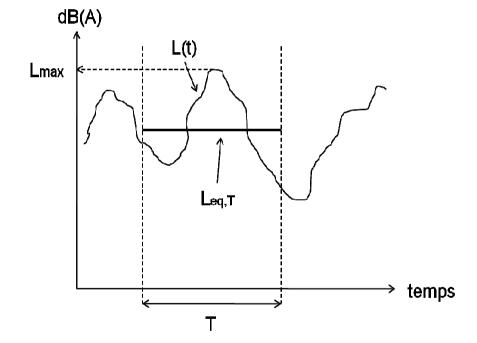


Road traffic noise in urban areas: proposal of noise annoyance indicators

Morel J. and Marquis-Favre C. ENTPE/DGCB CNRS FRE 3237



GdR VISIBLE – Bron 2011

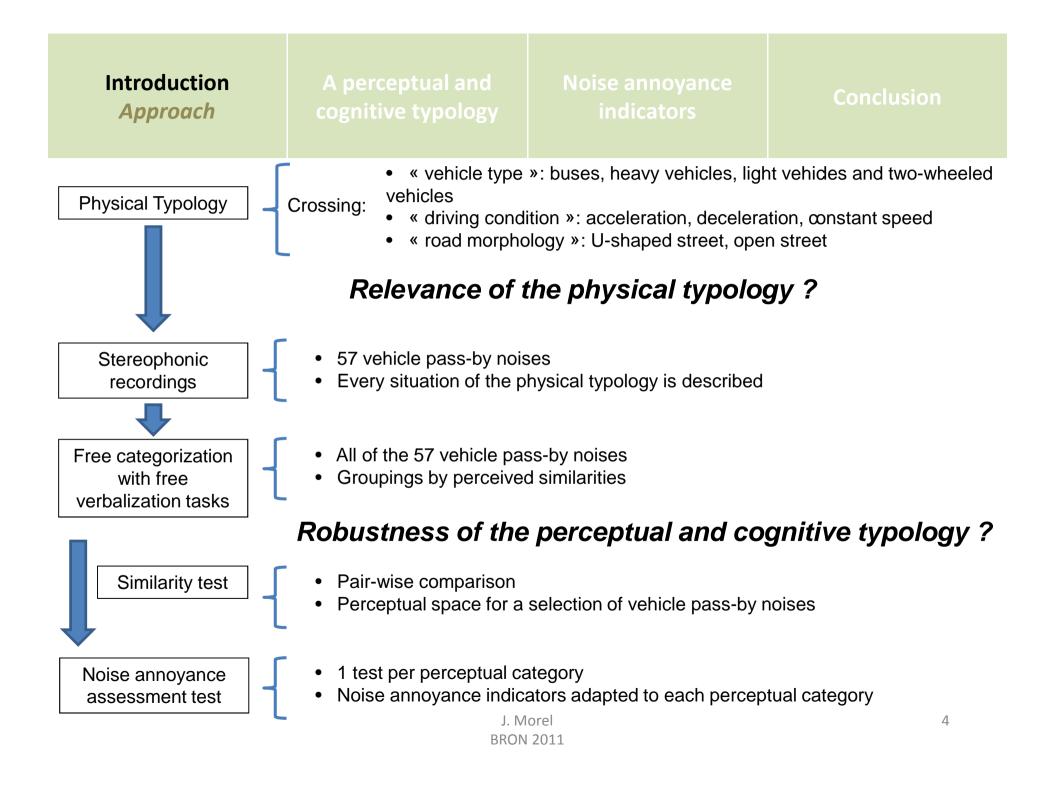

Introduction
ContextA perceptual and
cognitive typologyNoise annoyance
indicatorsConclusion

Community noise: a major subject of concern

• European Guideline 2002/49/CE

Road traffic noise map (CETE Lyon, 2009)

- Exposure situation represented by the L_{DEN} index:
- Energy based index
- Constructed using the LA,eq index.


Introduction Issues	A perceptual and cognitive typology	Noise annoyance indicators	Conclusion

- Dose-effects relationships: annoyance = f(LDEN)
- Noise maps would be « Annoyance maps » ?
- Energy based indices are limited

What is the relevance of noise maps in relation to noise annoyance from the resident point of view ?

Contribution with a perceptual characterization of road traffic noise

Introduction

A perceptual and cognitive typology Free categorization and verbalization

Noise annoyance indicators

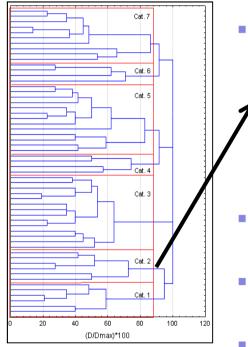
Conclusion

Stimuli lined up in random order

Three steps : Free categorization Free verbalization Prototype choice

Stereophonic reproduction (2.1) Quiet room

58 subjects (30M, 28W; between 18 and 57 years old)



Free sorting software Tcl-Labx (Gaillard in D. Dubois, Le sentir et le dire, Ed. L'Harmattan, 2009)

Introduction	A perceptual and cognitive typology Free categorization and verbalization	Noise annoyance indicators	Conclusion
--------------	--	-------------------------------	------------

Two-step analysis (cf. Morel *et al.*, Internoise 2010): Hierarchical Clustering

Linguistic analysis of verbal data carried out by D. Dubois (LCPE/LAM)

Hierarchical tree derived from the complete linkage method

- Exemple of category 2 (two-wheeled in acceleration):
 - Sound sources: « motorbikes », « moped »
 - Motion: « that are starting »
 - Description « more high-pitched », « more strident »
 - Evaluation: « more unpleasant »
 - Typology structured by « the vehicle type » and « the driving condition » in interaction.
 - « The morphology of the road » is perceived but not taken into account
 - Two-wheeled vehicles: a specific vehicle type

The typology establishment has been partly funded by ADEME (contract n⁰866C0066)

Introduction

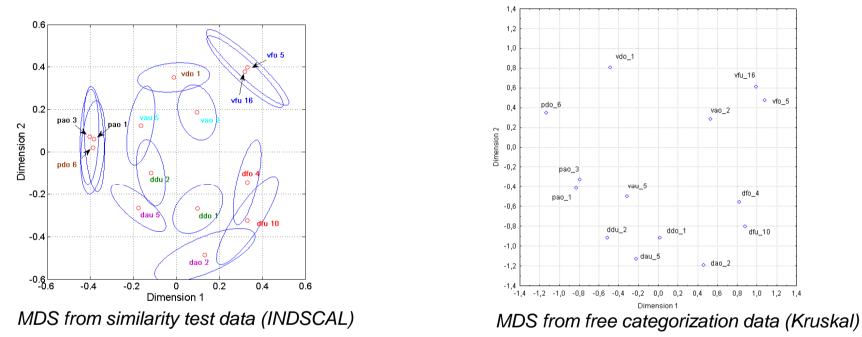
A perceptual and cognitive typology *Similarity test*

Noise annoyance indicators

Conclusion

Robustness of the perceptual and cognitive typology ?

- 14 sound excerpts: 2stimuli per category91 pairs
- Equalized in SPL
- Stereophonic reproduction (2.1) Quiet room
- 25 subjects (15M, 10W; between 20 and 57 years old)

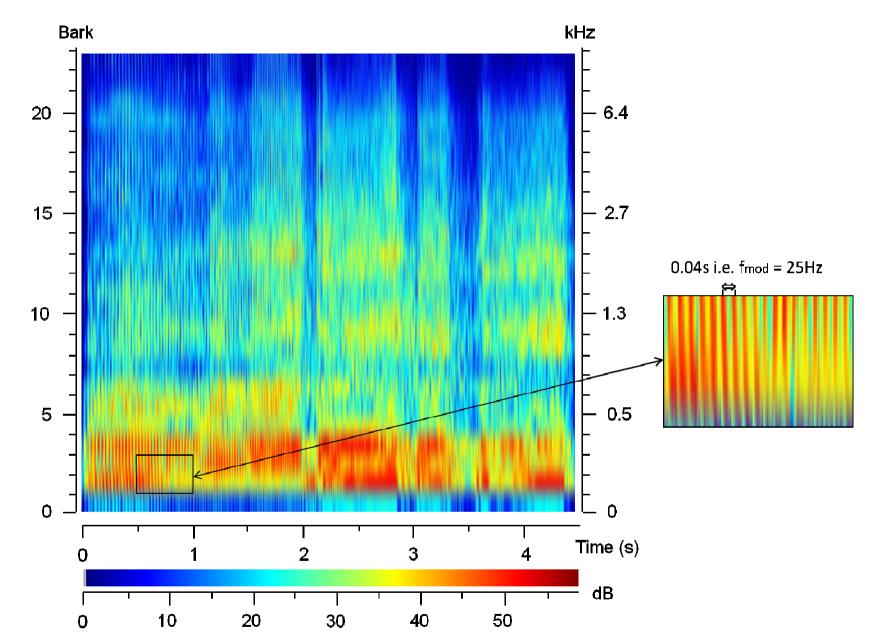

Similarity judgments on a continuous scale

Dichotomeous choice for disagreement

(cf. Faure and Marquis-Favre, AAA, 2005; Trollé *et al.*, AAA, 2009)

Introduction	A perceptual and cognitive typology <i>Similarity test</i>	Noise annoyance indicators	Conclusion
--------------	--	-------------------------------	------------

• MultiDimensionnal Scaling on similarity data



- Dimension 1: temporal evolution of vehicle pass-by noises
- Dimension 2: spectral aspects and identification of sound sources
- Close perceptual spaces (respectively r=0.96; p<0.001 and r=0.90; p<0.001 for dimensions 1 and 2)

Introduction	A perceptual and cognitive typology	Noise annoyance indicators <i>Method</i>	Conclusion	
	(1 per perceptual category)4 or 5 pass-by noises		Short-term noise annoyance with imaginary home situation:	
7 SPL (from 50 to 62 dB(A) in 2 dB steps)		Imagine your self at home, while relaxing (e.g.: you are reading, watching TV, having a conversation, gardening, or any other relaxing activity you are used to). While you are relaxing, you hear this road traffic noise:		
28 or 35 stimuli per test (presented one by one) Stereophonic reproduction (2.1) Quiet room		Noise annoyance judgments on a continuous scale (cf. Alayrac <i>et al</i> ., JASA, 2010)		
30 subjects per test (in average 19M, 11W)		Maral	0	

Introduction	A perceptual and cognitive typology	Noise annoyance indicators <i>Results</i>	Conclusion
--------------	-------------------------------------	---	------------

- Two-step analysis:
 - Two-factorial ANOVA with repeated measures (« Sound Level », « Noise Source »)
 - Correlation and regression (mean annoyance responses / acoustical and psychoacoustical indices)
- Example of category 2 (two-wheeled vehicles in acceleration):
 - Factor « Sound Level »: 43% of variance explained
 - Factor « Noise Source »: 34% of variance explained
 - Annoyance indicator = $f(N_{15-18}, Fluctuation strengh)$

Auditory Spectrogram of a two-wheeled vehicle in acceleration (sound pressure set at 56 dB(A))

- Analyse en deux étapes:
 - ANOVA à 2 facteurs (« Niveau sonore », « Source de Bruit »)
 - Corrélation et régression (réponses moyennes de gêne / indices acoustiques et psychoacoustiques
- Example of category 2 (two-wheeled vehicles in acceleration):
 - Factor « Sound Level »: 43% of variance explained
 - Factor « Noise Source »: 34% of variance explained
 - Annoyance indicator = f(N15-18, Fluctuation strengh)
- LA,eq generally less correlated to mean annoyance than Zwicker loudness N
- Indicators take into account both spectral and temporal (global evolution and local variation in the enveloppe) specificities

- Proposal of a perceptual and cognitive typology: 7 categories of road vehicle pass-by noises in urban areas.
- « vehicle type » and « driving condition » structure the typology in interaction; « road morphology » not taken into account in the categorization process
- Two-wheeled vehicles as a specific vehicle type
- Proposed annoyance indicators take into account both spectral and temporal specificities
- Other indices better correlated to annoyance than LA,eq
- Are the proposed indicators still relevant when considering a reconstituted road traffic ?
- Are the proposed indicators still relevant when considering road traffic noise combined to another noise ?

Thank you for your attention !

