

Numerical tools to model ground/structure interaction (+ Track system modeling and testing)

Philippe JEAN, Michel VILLOT

40 40 14-1 2044

Problem

source : model calibration from ground vibration

Introduction

Propagation: ground models

Transfer to structure: type of contact, 2D, 3D

Propagation through structures

Acoustic radiation in rooms

Perception : vibration, ground borne noise

Exposure descriptors

Modèles: Energetic, FEM/BEM, hybrid, mobilities,...

0 40 84-1 2044

(SEA) Statistical

Energy Analysis

Linked to other models for underground structures

SEA : Principles

Decomposition of the problem into systems: plates/ beams/ columns

Average Energies (F,L,T) per system & per bandwidth (1/3 octave)

Power balance

 $P_{i} = \omega \eta_{i} E_{i} + \Sigma \omega \eta_{ij} (E_{i} / ni - E_{j} / n_{j})$

1	η_1 +	-η ₂₁	- η ₃₁	[E1]	[Ρ _i /ω]
	ղ ₁₂ +				
	η ₁₃				
	-η ₁₂	η ₂ +	0	E2 =	10
		η ₂₁			
	-ղ ₁₃	0	ղ ₃ +	E3	0
		-	η_{31}		

SEA : limitations

Minimum of modes per bandwidth required

SIBUSE

Problem in Low Freq for longitudinal waves: In practice:

- OK for bending excitation down to 50 Hz
- NO for in plane excitation

 \Rightarrow Hybrid Models SEA/ modal / waves

Models adapted to Low Frequencies: FEM / BEM

Marg

FEM/BEM methods Software MEFISSTO

FEM : Finite Element Method BEM : Boundary Element method

40 40 84- 2044

 $\overline{u}(M).\overline{I}(M) = \int_{S} [\overline{T}(Q,M).\overline{u}(Q) - \overline{G}(Q,M).\overline{t}(Q)] dS + \overline{h}(M)$

- Separation into sub-domains
- Integral Representation BEM (collocation) (ground or thick structures)
- or FEM: condensation at boundaries (structure or portions of ground)
- Continuity of displacements and/or stresses at interfaces

10 10 14-1 2014

Software MEFISSTO

FEM/BEM methods

CIEUSE

Software MEFISSTO

Foundation ground lining (ADEME)

40 40 84-1 2044

ncieuse

Example of calculated efficiency 2D /2D ¹/₂

40 40 84-1 2044

Software MEFISSTO

Source Receiver Mobility Approach

PhD Pierre ROPARS (2009-2011) CSTB/ Univ Paris Est

10 10 14-: 201

Mobility approach

PRINCIPLE

TIPUSE

Separation of a problem into 2 parts (a) / (b) : source/receiver

Contact force
$$(f_c) = ([Y_s] + [Y_R])^{-1} (v_L)$$

Contact velocity $(v_c) = [Y_R] ([Y_S] + [Y_R])^{-1} (v_L)$

Power into building $\Pi = 1/2 Re\{ (f_c)^T (vc)^* \}$

10 10 14-1 2011

Mobility Technique: VALIDATION

CIEUSE

Total injected Power: Mobility Approach MEFISSTO

Mobility approach

Mobility Technique: VALIDATION

TOIBUSB

10 m

Total injected Power: Mobility Approach MEFISSTO

Buildings close to Railway Tracks Validation + influence of structural modifications

VIBSOLFRET SNCF/CSTB/SATEBA

10 10 14-1 2011

VIBSOLFRET ; source calibration SNCF/CSTB/SATEBA

- 1. Source calibrated from measured ground vibration
- 2. Transfer Function : H = LV(ground only) LV(ground+foundation)

 Extrapolation to other situations: BEM2D computations: Calibration of 2D BEM computations corrected by : H(2D) / H(2.5D)

a) 2D free field ground

 Lv_2

b) 2D ground + building foundations

Calibration correction factor 2.5D / 2D

c) 2D 1/2 free field ground

d) 2D ½ ground + building foundations

H=LV(ground)-LV(foundation)

Coherent line, point source

Ligneinfiniecohérente

1 force

forces every meter along 80 m,

along 320 m

L2=320m

VIBSOLFRET; ground calibration SNCF/CSTB/SATEBA

3m 6m

9m

12m

17m

20m

110

100

90

Surface Acceleration at d m to the track BEM2.5D referenced to d=6 m

Use of 3 types of homogeneous ground

- standard
- rather hard
- rather soft

Ground evaluated by comparing calculated and measured attenuation spectra

Attenuation with distance: MEFISSTO 2.5D () measured (- - -)

Ground acceleration level

18-19 Mai 2011

VIBSOLFRET ; influence of structural modifications SNCF/CSTB/SATEBA

-jeuse

Influence of facade thickness

Influence of floor dimension

Influence de floor thickness

0 10 14-1 2011

VIBSOLFRET ; vibration descriptors SNCF/CSTB/SATEBA

Descriptors for annoyance (e.g. Norwegian standard NS 8176) integrated into the numerical model

Measured situation:

```
dist to tracks=6m, h facade=40cm, h floor=20cm, floor length=3.4 m
```

Indicator $V_{w,95}$ for simulated situations

	Measure d (6 m)	Same Building at 20 m	h facade 20 cm	h floor 15 cm	h floor 25 cm	Floor length= 6.80m
v _{w,95} mm/s	0.11	0.04	0.89	0.26	0.11	0.56

Class A ($v_{w,95} < 0.1$): vibrations non percieved

Class B (0.1< $v_{w,95}$ < 0.15): low % of annoyance (<10%) likely to occur **Class C** (0.15< $v_{w,95}$ < 0.3): about 15% of people annoyed (recommended for new buildings)

Class D (0.3< v_{w,95} < 0.6): about 25% of annoyance likely to occur (recommended for existing buildings if upgrading costs to reach class C are too high)

0 40 04-1 004

Sources inside buildings:

Drills, impact hammer... (bending excitation)

BOUYGUES/CSTB

40 40 84-1 2014

40 40 84-1 204

Acoustic Radiation into rooms Computations

PhD Guillaume COCQUEL (2005-2008) RATP/CSTB

$$\sigma = \frac{\prod_{rad}}{\rho_0 c_0 S < v^2 >} \qquad \text{where} \qquad \prod_{rad} = \frac{<\rho^2 > A}{4\rho_0 c_0}$$

Modelisation of Acoustic Radiation

Analytical model => floor velocity V

Acoustic Radiation: V, G (room response) => P

$$p(M) = \int_{S_v} j\omega \rho_0 \times v(Q) \times G_v(M,Q) \times dS(Q)$$

 $Tr \Rightarrow A$ A et $P^2 \Rightarrow \Pi_{rad} \Rightarrow \sigma$

10 10 14-1 2011

Effect of characteristics on the radiation factor

2 dimensions 3x4 m2 & 4x5 m2 2 boundary conditions: simply supported (SS) & clamped (CC) 2 thicknesses : 20 cm & 30 cm

Example of calculated radiation efficiency

=> Estimation of uncertainty range

10 10 84-1 2014

Acoustic Radiation into volumes: measurements

Technical Room at RATP

Measurement of Lv (floor and walls)

Estimation of sound from Lv and calculated radiation efficiency σ et Tr => Π_{rad} => LP

10 10 14-1 2014

Guillaume COCQUEL RATP/CSTB

gdr Willencieuse 3372 Slencieuse Durable

Acoustic Radiation into volumes: variability

Computed variability : mean value and standard deviation

- Salle de séjour : S1 = 18,24m², S2 = 19,11m², S3 = 20,00m², S4 = 20,91m², S5 = 21,84m²,
- Hauteur : H1 = 2,5m, H2 = 2,6m, H3 = 2,7m, H4 = 2,8m, H5 = 2,9m, H6 = 3m,
- Epaisseur de la dalle : EP1 = 0,200m, EP2 = 0,225m, EP3 = 0,250m, EP4 = 0,275m, EP5 = 0,300m,
- Conditions aux limites : Encastré (CC), Appuis Simples (SS).

40.84-1.2044

Track work: model

Track system modeling:

- CASC software based on wave approach on infinite beam structures
- comparison between track systems (insertion gain)

laboratory test rig optimization

Output: transfer mobility between velocity level at ground / track system interface and applied force

Model main parameters

0 40 84-1 2044

Laboratory test rig:

- NF ISO EN 10846-2 implemented on whole tie (performance of resilient layer)

- setup for insertion loss **Deasurements** test rig used for Eurostar track work in London (SATEBA / CSTB); ongoing work for tramway tracks

CSTB / SNCF track department (2008)
SNCF / RFF / CSTB / SATEBA on freight trains (VIBSOLFRET 2007-2008)

Track work: test rig

Conclusions & perspectives

- •SEA: valid for bending excitation above 50 Hz
- •BEM/FEM approaches
- •Source /receiver approach using mobilities: ground/foundation: BEM2.5D, (3D under way) building (upper structure) : commercial software (Nastran,...)
- •Superstructure in 2D: results are sufficient for a parametric study
- •Effect of structural modifications estimated : increase of data in empirical model (data base)
- •Estimation of structure-borne vibration levels and ground borne noise levels in buildings
- •Exposure descriptors for human perception included (post-treatment stage) => expression of a relation between annoyance and structural parameters possible

Examples of application : Large Projects in Paris

Eole

RERD

SEMAPA slab (Austerlitz)

Structures above ground Structures above ground

SEA dedicated models (waves/SEA)

10 10 14-: 201

Example of application: building close to a railway station (SNCF)

Below ground (calculs BEM) and above ground (Nastran)

Building close to a platform

Example of application: Computation of mobilities

SIBUSB

Excitation at the lower part of a superstructure to compute mobilities

Building close to a platform

Example of application: floor response (bending)

lencieuse

Example of application: effect of structural modifications *Project CSTB/ACOUPHEN*

Warehouse close to existing tracks: converted into lodgings (above top slab)

Velocity response measured: model calibration

Objective: predict the influence of structure modifications

Part of the existing geometry

40 40 84-: 2014

le futur en

10 10 84-1 2014

